Разработка и производство сервоприводов,
бесколлекторных и вентильных двигателей, движитель (трастер) для телеуправляемого необитаемого подводного аппарата (ТНПА, ROV)

Адрес: Москва, ул.Большая Переяславская, д.9+7(985)928-61-99
Литье пластика на заказ
ДОКУМЕНТАЦИЯ

§3.4. Синхронные шаговые микродвигатели

В связи с развитием цифровой вычислительной техники разрабатывают и совершенствуют исполнительные элементы дискретного действия и, в частности, электрические шаговые двигатели. Шаговыми называют синхронные двигатели, преобразующие команду, заданную в виде импульсов, в фиксированный угол поворота вала или фиксированное перемещение без датчиков обратной связи. Шаговые двигатели выпускаются мощностью от единиц микроватт до киловатта, т.е. в основном, это микродвигатели малой мощности.

Шаговые микродвигатели (ШД) работают в комплекте с полупроводниковыми коммутаторами. Роль коммутатора состоит в переключении обмоток управления ШД с последовательностью и частотой, соответствующими заданной команде. Шаговый двигатель совместно с коммутатором можно рассматривать как систему частотного регулирования угловой скорости синхронного двигателя, отличающегося импульсным питанием и возможностью фиксации углового положения ротора. При этом результирующий угол поворота ШД строго соответствует числу переключений обмоток управления, направление поворота – порядку переключений, а угловая скорость – частоте переключений.

Шаговые двигатели можно подразделить на три основные конструктивные группы: с постоянными магнитами (активного типа), реактивные и индукторные. Они могут иметь различное число фаз, но наибольшее распространение получили двух-, трех- и четырехфазные ШД. Обмотка фазы статора либо целиком является обмоткой управления, либо ее расщепляют на две (выводом средней точки), магнитные оси которых сдвинуты в пространстве на 180°. Напряжение питания обмотки управления шагового двигателя представляет собой последовательность однополярных или разнополярных прямоугольных импульсов, поступающих от коммутатора.

Двигатели активного типа.
     Статор шаговых двигателей в отличие от синхронных микродвигателей непрерывного вращения имеет явновыраженные полюсы, на которых располагают обмотки управления. Число пар полюсов каждой из обмоток управления pм равно числу пар полюсов ротора.

Наибольшее распространение получили ШД активного типа (рис. 3.19) с ротором Р из постоянного магнита, выполненного в виде «звездочки» литой или составной конструкции.


Рис 3.19

Приведенный на рис. 3.19 ШД имеет две обмотки управления и три пары полюсов. Катушки, расположенные на нечетных полюсах 1,3... 11 статора С, соединены последовательно, образуя одну обмотку управления. Катушки, расположенные на четных полюсах 2,4... 12 образуют вторую обмотку управления, сдвинутую относительно первой на электрический угол 90°. При подаче напряжения на любую из обмоток управления входящие в ее состав полюсы намагничиваются в следующей последовательности: N,S, N,S, N,S.
   Принцип действия рассмотрим на примере двухполюсного двигателя.


Рис.3.20

На рис. 3.20, а показана схема подключения обмоток управления 1 и 2 двухфазного ШД к коммутатору К. Точками обозначены начала обмоток, U – напряжение питания, Uу – импульсный сигнал управления. На рис. 3.20, б изображена временная диаграмма силовых импульсов напряжения на обмотках управления двигателя при восьмитактной ( I-УШ ), разнополярной системе коммутации. Переход от одного такта к другому соответствует поступлению на коммутатор очередного импульсного сигнала управления. При этом, как видно, скачкообразно изменяется значение или полярность напряжения на обмотках управления.
   Рассмотрим более подробно, что происходит в эти моменты времени в двигателе. Во время такта I положительный импульс тока возбуждает обмотку управления 1 (рис. 3.20,а). Магнитный поток статора Фс направлен по оси этой обмотки (рис.3.20, в). Ротор (постоянный магнит NS) притягивается к полюсам обмотки I и занимает положение вдоль ее оси. При переходе к такту II дополнительно возбуждаются полюсы обмотки управления 2. Результирующий поток статора Фс, создаваемый теперь двумя обмотками, скачком поворачивается на 45° (рис. 3.20, в). Возникает синхронизирующий момент синхронного двигателя, и ротор поворачивается на тот же угол. При переходе к такту III остается возбужденной только обмотка 2. Поток статора и ротор поворачиваются еще на один шаг, равный 45°. Положение потока статора на всех восьми тактах показано на рис. 3.20, в.
   Показанная на рис. 3.20 раздельно-совместная последовательность включения обмоток управления является несимметричной системой коммутации, так как нечетным и четным тактам соответствует возбуждение различного числа обмоток. Результирующий поток статора меняется от такта к такту, что вызывает пульсацию синхронизирующего момента и является недостатком схемы.
   Систему коммутации называют симметричной, если на всех тактах возбуждается одинаковое число обмоток управления (раздельно, парами и т. д.).


Рис. 3.21

На рис. 3.21 изображены схемы включения обмоток управления, временные диаграммы импульсов напряжения на обмотках и пространственные диаграммы положений результирующего потока статора Фс для симметричной разнополярной схемы (рис. 3.21, а) коммутации ШД с двухфазной нерасщепленной обмоткой статора (mу=2) и симметричной однополярной схемы (рис. 3.21, б) коммутации ШД с двухфазной расщепленной обмоткой статора (mу =4, такую обмотку часто называют четырехфазной). Сравнение этих двух схем показывает, что применение разнополярной коммутации в двигателях с нерасщепленными обмотками фаз статора сказывается на шаге равносильно расщеплению обмоток управления при однополярной коммутации.
   Из сравнения рис. 3.20, в и 3.21, а видно, что при симметричной коммутации шаг увеличивается вдвое, а результирующий поток статора на всех тактах одинаков.
   В общем случае число шагов результирующего потока статора и ротора в пределах 360° прямо пропорционально числу обмоток управления mу и зависит от схемы управления. Количество состояний коммутатора, обеспечивающих новое угловое положение результирующего магнитного потока статора Фс в пределах электрического угла 360°, назовем числом тактов коммутации Ктк схемы управления. Согласно вышеизложенному

Ктк = mу К1 К2    (3.17)

где К1 – коэффициент, равный 1 при симметричной и 2 при несимметричной коммутации; К2 – коэффициент, равный 1 при однополярной и 2 при разнополярной коммутации (применение разнополярной коммутации в двигателях с расщепленными обмотками фаз статора смысла не имеет).При этом электрический шаг ротора ШД

α шэ=360°/Ктк    (3.18)

   Реальные шаговые микродвигатели являются многополюсными (Pм>1) и механический шаг, т.е. угол поворота ротора при воздействии одного сигнала управления и установленной схеме коммутации,

α шшэ / Pм = 360°/(Ктк Pм)   (3.19)

Увеличение числа пар полюсов при неизменном диаметре ротора ограничено технологическими возможностями и увеличением потока рассеяния между полюсами, обычно Pм =4-6. Увеличение числа обмоток управления связано с усложнением коммутатора, обычно mу =2-4. Поэтому у активных ШД α ш составляет порядка десяти градусов. Дальнейшее уменьшение шага достигается либо механическим редуцированием с помощью специальных кинематических механизмов, либо специальными схемами электрического дробления шага, которые будут описаны далее в § 3.5.

Реактивные двигатели.
   В конструкции реактивных шаговых двигателей с целью уменьшения шага используют принцип электромагнитного редуцирования скорости, изложенный в § 3.3
   Рассмотрим особенности конструкции и принцип действия четырехфазного реактивного редукторного ШД (рис. 3.22).


Рис. 3.22

Статор и ротор набирают из листовой электротехнической стали. Поверхность ротора и полюсов статора зубчатая. Зубцовые деления ротора и статора равны. Зубцы полюсов статора выполнены так, что, если зубцы ротора соосны с зубцами одной диаметрально расположенной пары полюсов статора, то относительно каждой из оставшихся трех пар полюсов статора они смещены на , и зубцового деления. При поочередном однополярном питании обмоток управления происходит поворот магнитного потока статора на 45° и синхронизирующий реактивный момент поворачивает ротор на 1/4 зубцового деления в положение минимального магнитного сопротивления относительно возбужденной пары полюсов. При большом числе зубцов ротора Zр его угол поворота значительно меньше угла поворота потока статора.
   В общем случае указанное смещение осей зубцов полюсов статора производится на угол 360°/(myZр). За полный цикл коммутации ротор поворачивается на одно зубцовое деление 360/Zр ,и шаг определяют по формуле

α ш = 360°/(Ктк Zр)     (3.20)

Следует иметь в виду, что в реактивном микродвигателе изменение направления поля на 180° не влияет на состояние ротора и при вычислении шага в выражении (3.17) для необходимо брать при однополярной и при разнополярной коммутации.
   В реактивном ШД полный период изменения магнитного поля в воздушном зазоре соответствует повороту ротора относительно статора на одно зубцовое деление. Это значит, что зубец и паз ротора эквивалентны паре полюсов и занимают электрический угол 360°, т.е. Zр = Pм и электрический шаг можно определять по (3.17).
   Сравнение выражений (3.19) и (3.20) показывает, что при одинаковом числе полюсных выступов на роторе шаг реактивного ШД в два раза меньше, чем активного. Кроме того, при одинаковом диаметре ротора в соответствии с технологическими особенностями у реактивного ШД можно выполнять значительно больше зубцов, чем полюсов постоянных магнитов у ШД активного типа. Поэтому у реактивных ШД шаг достигает нескольких градусов или долей градуса.

   Индукторные двигатели.
    Индукторные ШД отличаются от рассмотренных реактивных тем, что в них применяется подмагничивание ротора (электромагнитное или постоянными магнитами). Постоянный поток подмагничивания возбуждается со стороны статора или ротора.


Рис. 3.23

На рис. 3.23, а показана конструктивная схема двухпакетного индукторного ШД. В корпусе 2 расположены два магнитопровода статора 3 с общими обмотками управления 4. Два магнитопровода ротора 6 насажены на общий вал 5 и подмагничиваются постоянным магнитом 1, имеющим аксиальную намагниченность. Конструкция правого и левого комплектов магнитопроводов статора и ротора не отличается в отдельности от конструкции реактивного редукторного ШД, показанной на рис. 3.22. При этом магнитопроводы ротора 4 посажены на вал со сдвигом по углу на половину зубцового деления, т.е. электрический угол 180°. В результате магнитное сопротивление потоку подмагничивания не зависит от углового положения ротора.
   Поток подмагничивания вдоль всей окружности ротора имеет одинаковое направление: в левом комплекте — от ротора к статору, в правом — от статора к ротору (такой поток называют униполярным). Это наглядно видно на рис. 3.23, б, представляющем собой поперечный разрез левого магнитопровода ротора. Для упрощения принято, что на роторе четыре зубца, в реальных двигателях их значительно больше.
   Поскольку поверхности статора и ротора зубчатые, магнитное сопротивление потоку в разных точках окружности ротора разное. Следовательно, индукция потока подмагничивания зависит от угла , отсчитываемого вдоль окружности. Индукцию можно представить в виде двух составляющих: постоянной и переменной . Переменная составляющая превращает магнитопровод ротора в некоторый эквивалентный постоянный магнит с числом пар полюсов, равным числу зубцов ротора . Процесс возникновения электромагнитного момента, обусловленного взаимодействием переменной составляющей потока подмагничивания с полюсами статора, такой же, как в двигателях активного типа.
   Шаг индукторного ШД, как и реактивного, определяется формулой (3.20). По сравнению с реактивными ШД при одинаковом шаге увеличивается синхронизирующий момент, улучшаются энергетические и динамические характеристики.

Линейные шаговые двигатели.
    Линейные шаговые двигатели (ЛШД) преобразуют импульсную команду непосредственно в линейное перемещение. Это позволяет значительно упрощать кинематическую схему ряда электроприводов, устраняя механические преобразователи вращательного движения в поступательное.
   Однокоординатный ЛШД можно представить как развернутный на плоскости ШД вращательного типа.


Рис.3.24

На рис. 3.24, а показана схема магнитной системы двухфазного однокоординатного ЛШД индукторного типа. Ротор ЛШД (подвижная часть), называемый иногда позиционером, выполнен в виде двух П-образных магнитопроводов 2 из электротехнической стали, которые подмагничиваются постоянным магнитом 3. На каждом из магнитопроводов ротора расположено по обмотке управления 1. Статор 4 представляет собой плиту из магнитомягкого материала; поверхность плиты, обращенная к ротору, зубчатая.
   Поверхность полюсов ротора I—IV также зубчатая. Зубцовые деления ротора и статора равны. Зубцы двух полюсов в пределах одного магнитопровода ротора сдвинуты по отношению к зубцам статора на 1/2 зубцового деления, одного магнитопровода по отношению к другому — на 1/4 зубцового деления. В результате зубцы всех полюсов ротора по-разному ориентированы относительно зубцов статора, но магнитное сопротивление потоку подмагничивания не зависит от перемещения якоря.
   Принцип работы такого ЛШД не отличается от принципа работы рассмотренного выше индукторного ШД вращательного типа. В зависимости от наличия и знака импульса в обмотках управления максимум магнитного поля перемещается от полюса к полюсу ротора, например, по схеме I—III—II—IV. Синхронизирующая сила перемещает ротор в такое положение, чтобы против зубцов данного полюса ротора находились зубцы статора, т.е. на 1/4 зубцового деления.
  В общем случае линейный механический шаг Δxш= τzтк . Поскольку в индукторных ШД и ЛШД зубцовое деление является двойным полюсным делением, то электрический угловой шаг, соответствующий Δxш, будет равен

α шэ = 360°(Δxшz)=360°/Ктк

 По аналогии можно утверждать, что в общем случае электрический угол Θэ связан с механическим перемещением xмех соотношением

Θэ=360°(xмехz)   (3.21)

    В многокоординатном ЛШД осуществлено механическое объединение электромагнитных систем, обеспечивающих перемещение по нескольким координатам. При этом рассмотренные выше однокоординатные ЛШД являются электромагнитными модулями, обеспечивающими перемещение по каждой из координат.
   В настоящее время из многокоординатных ЛШД наиболее распространен двухкоординатный (X, Y) ЛШД с плоским воздушным зазором. На рис. 3.24, б показана схема конструкции двухкоординатного ЛШД индукторного типа. Статор 1 представляет собой плиту из магнитомягкого металла, на рабочей поверхности которой выполнены две системы взаимно перпендикулярных зубцов. Ротор 2 содержит две системы электромагнитных модулей для перемещения по двум координатам. Электромагнитные модули ротора 4, предназначенные для перемещения ротора по оси Y, имеют на поверхности, обращенной к статору, зубцы вдоль оси X. Электромагнитные модули 3, предназначенные для перемещения по оси X, имеют зубцы вдоль оси Y. Принцип коммутации обмоток управления и принцип работы по каждой из координат такие же, как и у однокоординатного ЛШД.
   В линейных ЛШД применяют магнитно-воздушную подвеску. Ротор притягивается к статору силами магнитного притяжения полюсов ротора. Через специальные форсунки под ротор нагнетается сжатый воздух, между ротором и статором возникает воздушная подушка, и ротор подвешивается над статором с минимальным воздушным зазором. При этом обеспечивается близкое к нулю сопротивление движению ротора и высокая точность позиционирования.
   В заключение следует отметить, что на базе ШД и ЛШД могут быть созданы двух-,трех- и четырехкоординатные двигатели, осуществляющие сложные перемещения в декартовой, цилиндрической и сферической системах координат, что имеет большое значение при создании промышленных роботов.


Назад | Оглавление | Вперед
+7(985)928-61-99 Москва, ул.Большая Переяславская, д.9