Разработка и производство сервоприводов,
бесколлекторных и вентильных двигателей, движитель (трастер) для телеуправляемого необитаемого подводного аппарата (ТНПА, ROV)

Адрес: Москва, ул.Большая Переяславская, д.9+7(985)928-61-99
Литье пластика на заказ
ДОКУМЕНТАЦИЯ

Содержание
Предыдущий § Следующий


Глава восьмая НАГРЕВАНИЕ И ОХЛАЖДЕНИЕ ЭЛЕКТРИЧЕСКИХ МАШИН

§ 8-1. Теплопередача в электрических машинах

Потери энергии вызывают выделение тепла и нагревание частей электрической машины. Передача тепла от более нагретых частей машины к менее нагретым и в окружающую среду происходит путем теплопроводности, лучеиспускания и конвекции,


part11-1.jpg

Теплопередача путем теплопроводности в электрических машинах происходит главным образом внутри твердых тел (медь, сталь, изоляция), в то время как в газах (воздух, водород) и жидкостях (масло, вода) главное значение имеет передача тепла конвекцией.

Если площадь каждой из двух параллельных поверхностей (например, медь обмотки и стенка паза машины) равна 5 и температуры #! и Ь2 на каждой поверхности постоянны, то через среду между этими поверхностями (в данном случае через изоляцию) в единицу времени передается количество тепла

Здесь б — расстояние между поверхностями, а Хпр— коэффициент теплопроводности промежуточной среды, численно равный количеству тепла, передаваемого в единицу времени через единицу площади при разности температур в 1° С и расстоянии между поверхностями, равном единице длины.

Теплопроводность металлов достаточно велика; например, для меди кпр = 385 вт/(град -м), а для электротехнической стали А-пр = = 20 -f- 45 вт/(град-м). Теплопроводность электроизоляционных материалов, наоборот, мала; например, для изоляции класса А кпр = 0,10 -f- 0,13 вт!(град -м), а для изоляции класса В А,пр = = 0,15 ч- 0,20 вт/(град -м). Вследствие этого перепады температуры в изоляции обмоток электрических машин получаются значительными, что затрудняет охлаждение обмоток и ограничивает величину линейной нагрузки и плотности тока.

Для машин с изоляцией класса А характерны следующие величины: толщина пазовой изоляции б = 0,5 мм = 5-10~4 м, тепловой поток на 1 м2 поверхности изоляции Q — 2500 вт. Если принять Хир — 0,125 вт/(град -м), то при этих условиях, согласно выражению (8-1), перепад температуры в изоляции

В высоковольтных машинах переменного тока толщина изоляции составляет несколько миллиметров, а виз = 20 ч- 25й С.

Теплопередача лучеиспусканием. Для абсолютно черного тела действителен закон Стефана—Больцмана:

qm=-am(*}a-Aia),                                                                                                                                                                                                                                                                                                                                                                                                    (8-2)

где qa4 — количество тепла, излучаемое с единицы поверхности тела в единицу времени; алЧ — коэффициент лучеиспускания;

part11-2.jpg

®ы и Ьга — абсолютные температуры излучающей поверхности и окружающей среды.

Согласно опытным данным, для абсолютно черного тела алч = = 5,65 •\0~8вт/(град12). Для неабсолютно черных тел, например для чугунных и стальных поверхностей, лакированной изоляции, адч уменьшается на 3—10%.

Выражение (8-2) для практических целей можно преобразовать. Имеем

Ща ~ в£ = («i« - *2а) (Ща + О.'Аа + ®Ы®£ + 0*2). (8-3)

Для электрических машин #la = 273 + ®г и $ = 273 + % изменяются в небольших пределах, и поэтому второй множитель в правой части (8-3) изменяется относительно мало. Первый же множитель Ф® = в представляет собой превышение температуры тела над температурой окружающей среды. Поэтому формулу (8-2) можно записать в следующем виде:

где КДЧ — преобразованный коэффициент лучеиспускания, равный количеству тепла, излучаемого в единицу времени с единицы поверхности при превышении температуры на 1° С. Для электрических машин в среднем Я,лч = 6 вт/(град -м2).

Полное количество тепла, излучаемое с поверхности S в единицу времени:

Теплопередача при естественной конвекции. Частицы жидкости или газа, соприкасающиеся с нагретым телом, нагреваются, становятся легче и вследствие этого поднимаются кверху, уступая свое место другим, еще не нагретым частицам, которые в свою очередь, нагреваясь, поднимаются кверху и т. д. Это явление будем называть естественной конвекцией в отличие от искусственной конвекции, которая создается искусственно, например путем обдува охлаждаемой поверхности воз-Духом при помощи вентилятора.

Рассмотрим сначала естественную конвекцию.

Количество тепла, отводимого конвекцией в единицу времени с единицы поверхности, определяется по формуле, аналогичной (8-4), и равно

<7кв = *квв,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (8-6)

part11-3.jpgpart11-4.jpg

а с поверхности площадью 5

QKB = ^KBS6.                                      (8-7)

Здесь Хкв — коэффициент теплоотдачи конвекцией, равный количеству тепла, отводимого в единицу времени с единицы поверхности при превышении температуры на 1°С, и в — превышение температуры охлаждаемой поверхности над температурой охлаждающей среды.

Величина Я,кв зависит от размеров и формы охлаждаемой поверхности, ее положения и т. д. Для электрических машин в случае воздушной кбнвекции можно в среднем принять Хкв = 8 em (град -м2). Теплопередача конвекцией в трансформаторном масле (обмотки трансформатора) осуществляется в 15—20 раз интенсивнее, чем в воздухе.

Согласно формулам (8-5) и (8-7), количество тепла, отдаваемого с поверхности путем излучения и конвекции,

причем для воздуха в среднем Ялк = 14 вт1(град'Мг).

Соотношения (8-5), (8-7) и (8-8) используются для расчета превышения температуры в условиях, когда искусственная конвекция отсутствует, например при необдуваемой поверхности бака трансформатора.

В электрических машинах условия рассеяния тепла лучеиспусканием и конвекцией для различных поверхностей различны. В современных вентилируемых машинах отвод тепла путем искусственной конвекции настолько преобладает над отводом тепла лучеиспусканием, что последний обычно не учитывают.

Теплопередача при искусственной конвекции. Для более интенсивного отвода тепла обычно применяют обдув внутренних, а иногда и внешних поверхностей электрических машин воздухом.

Усиление теплоотдачи при искусственной конвекции происходит в разной степени в зависимости от равномерности обдува, формы обдуваемых поверхностей и т. д. Исследование данного вопроса усложняется конструктивным многообразием электрических машин и их частей, а также сложностью аэродинамических явлений во внутренних полостях и каналах машины.

part11-5.jpg

Опыты показывают, что для коэффициента теплоотдачи в рассматриваемом случае можно использовать следующую приближенную эмпирическую формулу:

где ^кв — коэффициент теплоотдачи с обдуваемой поверхности; к'кв — то же при естественной конвекции; v — скорость движения воздуха относительно охлаждаемой поверхности, м/сек; Св — эмпирический коэффициент, зависящий от степени равномерности обдува поверхности.

Если, например, v = 25 м/сек и Св = 1,3, то теплоотдача, согласно формуле (8-10), увеличивается в 7,5 раза и для воздуха равна ккя = 8-7,5 = 60 em/(град-м2).

§ 8-2. Нагревание и охлаждение идеального однородного твердого тела

Уравнение нагревания. Хотя электрическая машина имеет сложное устройство, в основу анализа процесса ее нагревания может быть положена теория нагревания идеального однородного твердого тела, под которым здесь понимается тело, обладающее равномерным рассеянием тепла со всей поверхности и бесконечно большой теплопроводностью, вследствие чего все точки тела имеют одинаковую температуру. Составим дифференциальное уравнение нагревания такого тела, для чего рассмотрим его тепловой баланс.

Пусть в единицу времени в теле выделяется количество тепла Q. Тогда за бесконечно малый промежуток времени количество выделяемого тепла будет равно Q dt. Это тепло частично аккумулируется в теле при повышении температуры и частично отдается во внешнюю среду.

Если за время dt температура тела повысилась на d®, то количество аккумулируемого за это время тепла равно GcdQ, где G — масса тела и с — его удельная теплоемкость.

Пусть в рассматриваемом бесконечно малом интервале времени превышение температуры тела над температурой окружающей среды равно в. Тогда количество тепла, отдаваемого в окружающее пространство за время dt вследствие лучеиспускания, конвекции и 'еплопроводности, будет равно SkQdt, где 5 — площадь тела и ^ — коэффициент теплоотдачи с поверхности.

На основе закона сохранения энергии

Прежде чем приступить к решению уравнения нагревания (8-11), несколько преобразуем его.

part11-6.jpg

Установившееся превышение температуры и постоянная времени нагревания. После истечения достаточно длительного времени (теоретически при / = оо) температура тела достигает установившегося значения. Тогда = 0 и в = 9^. Подставив эти значения в выражение (8-11), получим

part11-7.jpg

Установившееся превышение температуры 9CT тем больше, чем больше выделяется тепла и чем хуже условия отдачи тепла, т. е. чем меньше SX.

Разделим обе части выражения (8-11) на SK, используем равенство (8-12) и обозначим

Тогда вместо (8-11) получим

Размерность всех членов (8-14) должна быть одинакова: температура, умноженная на время. Поэтому Т имеет размерность времени, что можно установить также по формуле (8-13). Величина Т называется постоянной времени нагревания тела, согласно формуле (8-13), она тем больше, чем больше теплоемкость тела Ос и чем меньше интенсивность отдачи тепла, т. е. чем меньше SX.

Если определить из равенства (8-12) SX и подставить в (8-13), то получим еще одно выражение для Т:

Числитель этого выражения равен количеству тепла, накопленному в теле при достижении 6 = воо.

Следовательно, в соответствии с выражением (8-15) постоянная времени нагревания Т равна времени, в течение которого тело достигло бы установившегося значения 9^, если бы отсутствовала передача тепла в окружающую среду и все выделяемое тепло накапливалось в теле.

part11-8.jpg
part11-9.jpg

Решение уравнения нагревания. В уравнении (8-14) можно разделить переменные и привести его к виду

part11-10.jpg

(8-19)

чему соответствует экспоненциальная кривая нагревания, изображенная на рис. 8-1, а. При малых t, когда и в мало, теплоотдача в окружающее пространство также мала, большая часть тепла накапливается в теле и температура его растет быстро, как это видно из рис. 8-1, а. Затем с ростом в теплоотдача увеличивается и рост температуры тела замедляется. При t = оо, согласно равенству (8-19), в = всо.

На рис. 8-1, а указаны значения 9, достигаемые через интервалы времени Т, 27\ 37 и 47\ Из этого рисунка видно, что тело достигает практически установившегося превышения температуры через интервал времени t = 47\

Охлаждение тела. Если тело имеет некоторое начальное превышение температуры 0О Ф 0, но Q = 0 и, следовательно, в соответствии с выражением (8-12) воо = 0, то происходит охлаждение тела от в = в0 Д° ® = ®» = 0.


part11-11.jpg

Подставив в (8-18) вга = 0, получим уравнение охлаждения тела

Экспоненциальная кривая охлаждения тела согласно уравнению (8-20) представлена на рис. 8-1, б. Сначала, когда в и соответственно также теплоотдача велики, охлаждение идет быстро, а по мере уменьшения в охлаждение замедляется. При / = оо будет в = 0.

Общий случай нагревания тела, описываемый уравнением (8-18), на основании формул (8-19) и (8-20) можно рассматривать как

part11-12.jpg

Рие. 8-1. Кривые нагревания (а) и охлаждения (б) идеального однородного твердого тела

наложение двух режимов: 1) нагревания тела от начального превышения температуры в = 0 до в = в^ и 2) охлаждения тела от 9 = ©о до в = 0. На рис. 8-2 кривая 3 представляет собой кривую нагревания, построенную по уравнению (8-18). Эту кривую можно получить путем сложения ординат кривых 1 я 2, соответствующих уравнениям (8-19) и (8-20).

Графический способ определения Т. Найдем величину подкаса-тельной бв (рис. 8-1, а), отсекаемой на асимптоте в — в^ касательной к кривой 0 = / (t). Из рис. 8-1, а следует, что

part11-13.jpg
part11-14.jpg

Подставив tg а из (8-22) в (8-21), получим

бв = Т.

Таким образом, подкасательная к любой точке кривой нагревания или охлаждения равна постоянной времени нагревания Т. Этим свойством кривых в = / (t) можно воспользоваться для графического определения Т, если имеется кривая 6 — / (t), снятая, например, опытным путем. На рис. 8-1, б и 8-2 показан способ определения Т при построении касательной к начальной точке кривой.

Заключительные замечания. Выше была изложена теория нагревания идеального однородного твердого тела. В действительности электрическая машина не представляет собой такого тела, так как она состоит из разных частей, обладающих конечной теплопроводностью, причем теплопроводность электрической изоляции достаточно мала. Поэтому отдельные части машины (обмотка, сердечники и др.) имеют различные температуры. В связи с этим более правильно былобы рассматривать электрическую машину

как совокупность нескольких однородных тел, между которыми существует теплообмен. В действительных условиях величина Т также не вполне постоянна, так как коэффициенты теплоотдачи зависят в определенной мере от температуры. Кроме того, воздух или другой охлаждающий агент при протекании по вентиляционным каналам нагревается, и поэтому температура охлаждающей среды для различных участков охлаждаемой поверхности имеет различные значения.

Таким образом, кривые нагревания и охлаждения не являются, строго говоря, экспоненциальными. Однако в большинстве практических случаев мы не делаем существенных ошибок, считая их экспоненциальными, т. е. применяя изложенную выше теорию нагревания идеального однородного тела.

§ 8-3. Основные номинальные режимы работы электрических машин и допустимые превышения температуры

Основные номинальные режимы работы. Режимы работы электрических машин в условиях эксплуатации весьма разнообразны. Машины могут работать с полной нагрузкой в течение длительного ьремени (как, например, генераторы на электрических станциях,

Рис. 8-2 Общий случай нагревания идеального однородного твердого тела


электродвигатели насосных установок и т. д.) и в продолжение относительно короткого промежутка времени (некоторые крановые двигатели и т. д.). В современных автоматизированных промышленных и других установках электрические машины весьма часто имеют циклический режим работы. В очень многих случаях электрические машины работают с переменной нагрузкой.

При различных режимах работы электрические машины нагреваются неодинаково. С точки зрения наиболее рационального использования материалов целесообразно, чтобы нагрев частей электрической машины в реальных условиях ее эксплуатации был близок к допустимому по государственным стандартам. Для этого каждую электрическую машину следовало бы проектировать и изготовлять с учетом конкретных условий и режимов ее работы в эксплуатации. Однако на практике это неосуществимо, так как даже при предположении, что условия работы каждой электрической машины можно предвидеть, в этом случае нельзя организовать массовое или серийное производство однотипных электрических машин и они были бы дорогими. Поэтому, согласно ГОСТ 183—66, электрические машины изготовляются для трех основных номинальных режимов работы.

Продолжительны _м номинальным режимом работы электрической машины называется режим работы при неизменной номинальной нагрузке, продолжающейся столько времени, что превышения температуры всех частей электрической машины при неизменной температуре охлаждающей среды достигают практически установившихся значений.

Кратковременным номинальным режимом-работы электрической машины называется режим -работы, при котором периоды неизменной номинальной нагрузки при неизменной температуре охлаждающей среды чередуются с периодами отключения машины: при этом периоды нагрузки не настолько длительны, чтобы превышения температуры всех частей электрической машины могли достигнуть практически установившихся значений, а периоды остановки электрической машины настолько длительны, что все части ее приходят в практически холодное состояние.

Согласно ГОСТ 183—66, машины с кратковременным режимом работы изготовляются с длительностью рабочего периода 15, 30, 60 и 90 мин.

Повторно-кратковременным номинальным режимом работы электрической машины называется режим работы, при котором кратковременные периоды неизменной номинальной нагрузки (рабочие периоды) при неизменной температуре охлаждающей среды чередуются с кратковременными периодами отключения машины (паузами), причем как рабочие периоды, так


и паузы не настолько длительны, чтобы превышения температуры отдельных частей электрической машины могли достигнуть установившихся значений.

Повторно-кратковременный номинальный режим работы характеризуется огносительной продолжительностью включения (ПВ), г. е. отношением продолжительности рабочего периода к продолжительности ци"кла (суммарной продолжительности рабочего периода и паузы).

ГОСТ 183—66 предусматривает изготовление машин с повторно-кратковременным режимом работы с продолжительностью включения (ПВ) 15, 25, 40 и 60%.

Кроме перечисленных трех основных номинальных режимов работы, в ГОСТ 183—66 имеются в виду еще четыре дополнительных номинальных режима работы, при которых нагрузка имеет циклический характер.

Большинство электрических машин изготовляется для продолжительного режима работы.

Допустимые превышения температуры частей электрических машин. С целью обеспечения нормальных сроков службы электрических машин температуры отдельных частей машины, и в особенности температура изоляций обмоток, должны быть ограничены.

В § В-4 были указаны предельно допустимые температуры работы ■©до,, для различных классов изоляции. Однако рабочая температура изоляции и отдельных частей машины # зависит не только от нагрузки машины, но и от температуры окружающей или охлаждающей среды Фо. От нагрузки машины зависит только превышение температуры в отдельных ее частей. Между перечисленными величинами существует зависимость

По изложенным причинам ГОСТ 183—66 и стандарты на отдельные типы машин нормируют предельно допустимые превышения температуры Одоп и одновременно фиксируют значение максимально допустимой температуры окружающей среды #0 = 40° С.

Способы определения превышений температур обмоток не гарантируют получения их максимальных значений, а метод сопротивления позволяет установить только среднее превышение температуры обмотки. Поэтому в стандартах в зависимости от способа измерения температуры и конструкции обмотки устанавливаются значения 6Д0п, которые на 5—15° С меньше $жоп— "во-

Наиболее надежные результаты дает метод сопротивления и

'стод заложенных термодетекторов. Последние представляют собой

гермометры сопротивления или термопары, заложенные между

катушками в пазах и в других частях машины при ее изготовлении.

part11-15.jpg

Термометры сопротивления изготовляются из тонкой медной проволоки, и температура определяется по изменению ее сопротивления. Для указанных методов измерения стандарты устанавливают при до = 40° С в большинстве случаев допустимые превышения температуры: 60° С — для класса изоляции А, 70° С — для класса Е, 80° С — для класса В, 100° С — для класса F, 125° С — для класса Н. Если температура окружающей среды больше или меньше 40° С, то стандарты разрешают определенные изменения допустимых превышений температуры. Допустимые кратковременные перегрузки электрических машин также нормируются стандартами.

§ 8-4. Нагревание электрических машин при различных режимах работы

Нагревание при продолжительном режиме работы происходит по кривой рис. 8-1, а или 8-2. При этом должно быть воо sg @доп для данного класса изоляции.

При проектировании электрических машин производятся также тепловые расчеты с целью установления превышений температуры отдельных частей машины. Тепловой расчет для продолжительного режима работы является основным! так как он лежит в основе расчетов превышений температур при кратковременном и повторно-кратковременном режимах работы.

Тепловые расчеты электрических машин достаточно сложны и рассматриваются подробнее в курсах проектирования электрических машин. Здесь укажем только ход расчета для продолжительного режима работы, когда превышения температуры достигают установившихся значений.

Величины потерь в определенных частях машины известны из электрического расчета машины. Из конструктивной схемы устанавливаются направления тепловых потоков и количество тепла, отдаваемое с охлаждаемых поверхностей. Затем определяются скорости воздуха или другой охлаждающей среды у отдельных охлаждаемых поверхностей и вычисляются: 1) по формуле (8-1) перепад температуры в изоляции обмоток ©из = ^ — Ф2; 2) по этой же формуле (8-1) перепад температуры в сердечнике на участке от обмотки до охлаждаемой поверхности вс; 3) по формуле (8-8) превышение температуры охлаждаемой поверхности над температурой охлаждающей среды © = @п 0. Кроме того, при движении газов и жидкостей по каналам необходимо учесть средний подогрев самой охлаждающей среды А6ОХЛ.

Превышение температуры обмотки над температурой поступающей в машину охлаждающей среды ©об выражается суммой

part11-16.jpg

Величина 0о6 не должна превышать допустимого значения по ГОСТ 183—66 и др.

Скорости охлаждающей среды у тех или иных поверхностей, а также величины соответствующих коэффициентов теплоотдачи удается установить лишь приблизительно ввиду сложности аэродинамических явлений и картины распределения тепловых потоков в машине. Поэтому тепловые расчеты дают достаточно точные результаты лишь при наличии достаточных экспериментальных данных.

Нагревание при кратковременном режиме работы. Чтобы определить превышение температуры различных частей машины 6кр при кратковременном режиме работы, сначала находят по способу, указанному выше, превышение температуры воо в случае, если бы машина работала при заданной мощности продолжительно, а также устанавливают постоянные времени нагревания Т. Зная продолжительность кратковременного режима tKp, можно вычислить достигаемые при этом режиме превышения температуры по формуле (8-19):

раз больше, чем при продолжительном режиме работы. Во столько же раз могут быть больше допустимые значения потерь в машине. Поэтому при данных габаритах машин и расходе материалов мощности машин с кратковременным режимом работы больше мощностей машин с продолжительным режимом работы.

Нагревание при повторно-кратковременном режиме работы. Предположим, что машина начинает работу в режиме повторно-кратковременной нагрузки с холодного состояния. Пусть время рабочего периода равно t?, а время паузы t0.

Нагревание машины в первый рабочий период идет по участку 0~ 1 кривой нагревания / (рис. 8-3), которая может быть начерчена, если известны постоянная времени нагревания Тв и установившееся превышение температуры во, при работе в продолжительном режиме с данной мощностью.

part11-17.jpg

Затем наступает пауза, и машина начинает охлаждаться. Охлаждение идет по участку Г 2' кривой // (рис. 8-3). Эта кривая может быть также начерчена, если известны вет и постоянная времени охлаждения Тохл. Если условия вентиляции во время паузы такие же, как и в рабочем периоде, то Г0Хл = Тп. Если же, например, ро время паузы машина стоит и не вентилируется, то Гохл > Тп. Охлаждение после первого периода работы идет по такому участку кривой //, начало которого соответствует значению в, достигнутому в конце этого периода работы. Перенеся участок /' — 2' кривой // параллельно самому себе в положение /—2, получим

участок кривой 0—/—2 изменения в за время первого цикла работы.

Во время второго периода работы нагревание идет па тому участку кривой /, начало которого соответствует значению в, достигнутому в конце первой паузы в работе.

Подобным образом можно построить зубчатую кривую /// нагревания машины при повторно-кратковременном режиме работы. Она состоит из участков кривых / и //, смещенных параллельно самим себе на соответствующие интер-

part11-18.jpg

Рис. 8-3. Построение кривой нагревания при повторно-кратковременном режиме работы

валы времени работы tp и пауз t0, помеченные в нижней части рис. 8-3.

Спустя некоторое время температурный режим повторно-кратковременной работы практически устанавливается и общий подъем кривой /// прекращается. Превышение температуры машины при этом колеблется в пределах от вмакс до 9МИН (рис. 8-3). Значение 0макс не должно превышать значения 0ДОП для данного класса изоляции.

Как видно из рис. 8-3, вмакс <; ©от при продолжительном режиме работы. В соответствии с этим при повторно-кратковременном режиме работы при тех же габаритах машины и тех же условиях вентиляции можно допустить в воо/0макс раз большие потери и соответственно большую мощность. При желании использовать машину, предназначенную для продолжительного режима работы, в повторно-кратковременном режиме ее мощность можно увеличить, если это допустимо по другим условиям работы, например по коммутации или перегрузочной способности по моменту вращения,


§ 8-5. Охлаждение электрических машин

Конструктивные формы исполнения электрических машин. Для

предотвращения чрезмерного нагрева электрических машин необходимо обеспечить надлежащие условия отвода выделяющегося в машинах тепла. С ростом мощности электрических машин условия отвода тепла утяжеляются (см. § 4-3), и поэтому в крупных машинах необходимо применять более интенсивные способы охлаждения.

Способы охлаждения в свою очередь зависят от конструктивных форм исполнения электрических машин, из которых здесь укажем лишь наиболее типичные.

Открытые электрические машины не имеют специальных приспособлений для предохранения от случайного прикосновения к вращающимся и токоведущим частям, а также для предотвращения попадания внутрь машины посторонних предметов. Такие машины находят применение только в машинных залах и лабораториях. Защищенные электрические машины имеют указанные приспособления и применяются в закрытых помещениях. Брызгозащищенные машины дополнительно защищены от попадания внутрь машины капель влаги, падающих под углом до 45° к вертикали. В этих машинах на все отверстия, расположенные в их верхних частях, устанавливаются глухие крышки и жалюзи, которые могут иметь прорези, прикрытые козырьками. Машины с таким исполнением весьма распространены и могут быть использованы также на открытом воздухе.

В закрытых электрических машинах внутреннее пространство совершенно отделено от внешней среды. Они применяются в пыльных помещениях, а также на открытом воздухе. Дальнейшим развитием закрытых машин являются взрывозащищенные (взрыво-безопасные) и герметические машины. Первые из них используются для работы во взрывоопасных шахтах и на химических предприятиях, когда требуется, чтобы искрение или взрыв внутри машины не приводили к взрыву или воспламенению газов во внешней среде. Герметические машины выполняются с особе плотным соединением поверхностей разъема, так чте вни могут работать даже под водой.

Способы охлаждения электрических машин. По способу охлаждения различаются:

1) машины с естественным охлаждением, в которых нет никаких специальных приспособлений для охлаждения;

2) машины с внутренней самовентиляцией, охлаждение которых происходит с помощью вентиляторов или других вентиляционных устройств, укрепленных на вращающихся частях вентилируемой машины и осуществляющих вентиляцию внутренних полостей машины (открытые и защищенные машины);

3) машины с наружной самовентиляцией, в которых путем самовентиляции охлаждается внешняя поверхность машины, а


внутренние части машины закрыты для доступа внешнего воздуха (закрытые машины);

Рис. 8-4. Аксиальная система вентиляции машины постоянного

тока

4) машины с независимым охлаждением, в которые охлаждающая газообразная или жидкая среда подается с помощью отдельного вентилятора, компрессора или насоса, имеющего собственный привод.

Особенности разных способов охлаждения иллюстрируются ниже на примере машин постоян-л [ j г///?/////*, |=Ш J-i ного тока, но и охлаждение ма-

I                                                                                                                                                                    _ \~ \ Е5Е J шин пеРеменного тока осущест-

И I I ЧбьщяА l=iCL Г вляется подобным же образом.

Машины с естественным охлаждением, в настоящее время строятся лишь на мощности порядка нескольких десятков ватт. В некоторых случаях естественное охлаждение применяется также для закрытых машин мощностью до нескольких сотен ватт, но в этом случае для усиления отдачи тепла поверхность охлаждения увеличивают путем изготовления корпуса машины с ребрами.

Машины с внутренней самовентиляцией имеют наибольшее распространение. При этом различают аксиальную (рис, 8-4) и

part11-19.jpg

Рис. 8-5. Радиальная система вентиляции машины постоянного тока

part11-20.jpg

радиальную (рис. 8-5) системы вентиляции. В первом случае передача тепла воздуху происходит при его движении вдоль охлаждаемых поверхностей в аксиальном направлении, а во втором — в радиальном направлении.

В машинах постоянного тока при аксиальной вентиляции поток воздуха движется между полюсами и вдоль внешней поверхности якоря, а при Da > 200 мм также по выполняемым в этом случае аксиальным каналам между якорем и валом или по аксиальным

part11-21.jpg

Рис. 8-6. Машина постоянного тока с наружной самовентиляцией

/ — внутренний вентилятор (мешалка), 2 — наружный вентилятор 3 — кожух вентилятора

вентиляционным каналам в сердечнике якоря. Потоки воздуха омывают также коллектор. Воздух поступает в машину с одного ее конца и выбрасывается с другого.

Воздух при движении вдоль охлаждаемых частей машины подогревается, и, следовательно, нагрев машины при аксиальной вентиляции будет в аксиальном направлении неравномерным. Поэтому аксиальная вентиляция применяется обычно при активной длине машины до 200—250 мм.

При радиальной системе вентиляции сердечник якоря имеет радиальные каналы (см. § 1-2 и рис. 1-9) с ветреницами. При вращении якоря ветреницы действуют подобно лопастям вентилятора, и поэтому установка на валу особых вентиляторов иногда оказывается излишней. Воздух при этой системе вентиляции поступает внутрь машины с торцов и выбрасывается по бокам станины или через отверстия в ней.

Машины с наружной самовентиляцией — это машины закрытой конструкции, у- которых на валу установлен наружный вентилятор, обдувающий наружную поверхность станины (рис. 8-6). При


этом для увеличения поверхности охлаждения наружная поверхность станины часто снабжается продольными ребрами. Часто машина имеет также внутренний вентилятор или вентиляционные крылышки для создания более интенсивного движения воздуха внутри машины и усиления теплообмена между внутренними частями машины и станиной (рис. 8-6).

Машины с независимой вентиляцией. Обычно такие машины тоже охлаждаются воздухом, который подается в машину с помощью отдельного вентилятора (рис. 8-7). Такую вентиляцию называют также принудительной. Иногда вентилятор со своим приводным двигателем устанавливается на корпусе вентилируемой машины.

В рассматриваемом случае система вентиляции может быть как аксиальной, так и радиальной. Применяется этот способ вентиляции обычно тогда, когда скорость вращения машины регулируется в широких пределах, так как в этом случае при самовентиляции (с вентилятором на валу машины) нельзя обеспечить необходимого расхода воздуха при низкой скорости вращения. Всасывающая и нагнетательная вентиляция. В схемах рис. 8-4 и 8-7 вентилятор находится в конце вентиляционного тракта машины и через него проходит воздух, подогретый внутри машины. Такая вентиляция называется всасывающей. Если вентилятор установлен в начале вентиляционного тракта машины, то через него проходит холодный воздух, при этом воздух нагнетается в машину, и вентиляция называется нагнетательной. К. п. д. вентилятора не равен единице, и в вентиляторе происходит дополнительный нагрев воздуха, который в ряде случаев может составить заметную величину (3—8 °С). Поэтому при нагнетательной вентиляции в машину подается уже несколько подогретый воздух. Условия охлаждения при этом ухудшаются и для достижения такого же эффекта, как и при всасывающей вентиляции, расход воздуха необходимо увеличить на 15—20%, что вызывает увеличение вентиляционных потерь на 50—70%. По этим причи-

Рис. 8-7. Машина постоянного тока с независимой вентиляцией

part11-22.jpg

нам следует предпочитать всасывающую вентиляцию, если она не вызывает усложнения конструкции машины. Однако всасывающей вентиляции также присущи некоторые недостатки. Например, в схеме рис. 8-4 внутрь машины засасывается пыль с коллектора.

Протяжная и замкнутая вентиляция. Как самовентиляция, так и независимая вентиляция могут быть двух родов: протяжная и замкнутая.

При протяжной вентиляции охлаждающий воздух поступает в машину из окружающего внешнего пространства и после прохождения через машину возвращается в атмосферу (рис. 8-4 и 8-7). Недостаток такой вентиляции заключается в том, что на внутренних поверхностях машины накапливаются пыль и грязь, которые всегда содержатся в воздухе. Это вызывает ухудшение условий охлаждения машины и может быть причиной аварии. Применение фильтров на входе воздуха в машину нерационально, так как их нужно часто очищать и они увеличивают сопротивление движению воздуха. При несвоевременной очистке фильтра условия охлаждения резко ухудшаются. Необходимо иметь в виду, что через самые крупные машины каждый час проходит несколько сотен тонн воздуха, и поэтому даже при незначительном процентном содержании пыли ее абсолютное количество довольно-таки велико.

Для машин малой мощности возникающие затруднения решаются проще. При сильно загрязненной атмосфере можно использовать закрытые машины, охлаждаемые с наружной поверхности. При умеренном содержании пыли в воздухе можно применять машины защищенной конструкции, продувать их регулярно сжатым воздухом и для периодических чисток разбирать машину один-два раза в год.

Применительно к крупным машинам эти меры непригодны. Такие машины невозможно охлаждать с наружной поверхности, так как эта поверхность возрастает пропорционально квадрату линейных размеров, а потери в машине — пропорционально кубу линейных размеров. Разборка и сборка крупной машины, ее чистка являются весьма трудоемкими и дорогими операциями. Поэтому в крупных машинах переменного тока, а в ряде случаев также в крупных машинах постоянного тока применяется замкнутая система вентиляции (рис. 8-8). При такой вентиляции воздух циркулирует по замкнутому циклу; проходит через машину М, воздухо-

part11-23.jpg

Рис. 8-8. Замкнутая система вентиляции


охладители О, вентилятор В и снова попадает в машину. Возможно использование как нагнетательной (рис. 8-8, а), так и всасывающей вентиляции (рис. 8-8, б).

Водородное охлаждение. Водород является более эффективным охлаждающим агентом, чем воздух. По сравнению с воздухом у водорода при атмосферном давлении теплопроводность больше в 7,1 раза и средний коэффициент теплоотдачи при одной и той же скорости больше в 1,7 раза, а при одинаковом весовом расходе — в 11,8 раза. Благодаря этому для достижения такой же эффективности охлаждения, как и воздухом, требуются меньшие весовые расходы водорода, а вентиляционные потери, которые в крупных быстроходных машинах составляют большую часть суммарных потерь, снижаются почти в десять раз. При водородном охлаждении срок службы изоляции увеличивается, так как исключаются окислительные процессы и образование вредных азотистых соединений при коронных разрядах. Поэтому водород находит широкое распространение для охлаждения быстроходных машин переменного тока мощностью 25 000 кет и выше.

При водородном охлаждении применяется замкнутая система вентиляции и во избежание образования взрывчатой смеси давление в системе поддерживается несколько выше атмосферного (1,05 атм). В ряде случаев для усиления интенсивности охлаждения давление водорода в системе охлаждения увеличивается до 3—5 атм. При этом необходимо иметь надежные уплотнения, чтобы не допустить значительной утечки водорода из машины.

Непосредственное, или внутреннее, охлаждение обмоток. Для электрических машин мощностью 300—500 тыс. кет и больше замкнутая система вентиляции с водородным охлаждением также оказывается недостаточной. Поэтому в таких машинах обмотка изготовляется из полых проводников и применяется внутреннее охлаждение этих проводников водородом при давлении до нескольких атмосфер или водой. Можно также использовать вместо водорода или воды трансформаторное масло. Однако теплопроводность и коэффициент теплоотдачи воды значительно больше, чем у трансформаторного масла. Поэтому масло используется реже.

Так как подвод воды в обмотку вращающегося ротора связан с определенным усложнением конструкции, то применяется также смешанное внутреннее охлаждение: обмотки ротора охлаждаются водородом, а обмотки статора — водой. Водород подается в обмотки при помощи компрессоров или особых газозаборников, установленных на вращающемся роторе. Для подачи воды применяются насосы.

Рассмотренные системы непосредственного охлаждения во всех случаях выполняются замкнутыми, с циркуляцией одной и той же


массы охлаждающего агента и с охлаждением его в предназначенных для этой цели охладителях.

При непосредственном охлаждении обмоток перепады температуры в изоляции исключаются и можно резко увеличить плотность тока.

При водяном охлаждении мощность машины ограничивается в основном уже не условиями нагрева, а другими техническими и экономическими показателями.

Расход охлаждающей среды (ж3), необходимый для отвода тепла из машины, равен

где р — отводимые потери, вт; с — удельная объемная теплоемкость охлаждающей среды, дж1(град-м3); вв = Фг — #х — превышение температуры выходящей из машины нагретой охлаждающей среды ■&,. над температурой поступающей в машину охлаждающей среды #х, ° С.

Для воздуха с = 1100 джЦград-м3). Величина вв в зависимости от системы вентиляции, конструкции машины и ее мощности изменяется в пределах 12—30° С. Таким образом, на 1 кет потерь необходимое количество воздуха

или ПО -н 270 мъ1ч.

Для водорода при атмосферном давлении также с — = 1100 джЦград -м3), и поэтому объемный расход водорода такой же, как и в случае воздушного охлаждения. Удельная объемная теплоемкость водорода изменяется пропорционально давлению, и поэтому при повышенном давлении водорода его объемный расход соответственно уменьшается. Однако весовой расход водорода не зависит от давления и будет в 14,4 раза меньше весового расхода воздуха.

Для воды с = 3500-1100 дж/(град 3), а для трансформаторного масла с = 1400-1100 дж/(град -м3). Соответственно при прочих равных условиях объемный расход воды в 3500 раз меньше, чем воз-Духа. Это позволяет уменьшить скорости течения воды и сечения каналов.

Более подробно способы охлаждения электрических машин и вопросы их расчета рассматриваются в курсах проектирования и конструкции электрических машин [17—23].

part11-24.jpgpart11-25.jpg

Содержание
Предыдущий § Следующий

+7(985)928-61-99 Москва, ул.Большая Переяславская, д.9