Разработка и производство сервоприводов,
бесколлекторных и вентильных двигателей, движитель (трастер) для телеуправляемого необитаемого подводного аппарата (ТНПА, ROV)

Адрес: Москва, ул.Большая Переяславская, д.9+7(985)928-61-99
Литье пластика на заказ
ДОКУМЕНТАЦИЯ

Учебное пособие «Электромеханические устройства автоматики»

Введение

Общие сведения об электромеханических устройствах автоматики

Электромеханические устройства – это класс технических средств автоматики, в основе работы которых лежит электромеханическое преобразование энергии и сигналов. В таких устройствах электромеханическое преобразование как правило сопровождается электромагнитным преобразованием энергии.
    Электромагнитные устройства – это класс технических средств автоматики, в основе работы которых лежит электромагнитное преобразование энергии и сигналов.
    Как и всякая классификация, эта классификация в определённой мере условная. Контактные реле имеют подвижные части, но рассматривают их обычно в теории электромагнитных устройств. Трансформаторы не имеют подвижных частей, но рассматривают их обычно в теории электромашинных устройств.Подавляющее большинство электромеханических устройств составляют электромашинные устройства.
   Электромашинные устройства – это класс технических средств, включающий в себя как классические электрические машины (двигатели, генераторы), так и специальные устройства, выполненные на базе электрической машины и предназначенные для различных функциональных преобразований в системах автоматического управления.
   Электрическая машина – это электромеханический преобразователь энергии, состоящий из ряда взаимодействующих электромагнитных контуров, часть из которых неподвижна, а часть перемещается. Электрическая машина является обратимой, т.е. может работать в двух основных режимах: двигателя – преобразователя электрической энергии в механическую, и генератора – преобразователя механической энергии в электрическую. Кроме этого, возможны специальные тормозные режимы работы электрической машины.
   В большинстве электрических машин, в том числе в двигателях, перемещение контуров вращательное. Вращающиеся двигатели просты по конструкции и надёжны в эксплуатации. Однако, если в технологическом оборудовании происходит поступательное движение, к двигателю подсоединяют механический преобразователь вращательного движения в поступательное. Это усложняет схему привода. Без механического преобразователя можно обойтись, если сам двигатель будет преобразовывать электрическую энергию в механическую поступательного движения. Такие двигатели называют линейными.

Классификация электрических машин.
   По выходной мощности электрические машины можно разделить на следующие группы: микромашины – до 0,75 кВт, машины малой мощности – от 0,75 до 10 кВт, машины средней мощности – от 10 кВт до сотен киловатт, машины большой мощности – более сотен киловатт.
   По частоте вращения машины подразделяются на тихоходные – с частотой вращения до 300 об/мин, средней быстроходности – 300-1500 об/мин, быстроходные – 1500-6000 об/мин и сверхбыстроходные – свыше 6000 об/мин. Частота вращения электрических машин (об/мин) является широко используемой на практике величиной. Однако при изложении теоретических разделов в учебнике используется другая величина – угловая скорость (рад/с), входящая в систему единиц СИ.
   По степени защиты от внешних воздействий конструктивное выполнение электрических машин может быть защищённое, брызгозащищённое, каплезащищённое, водозащищёное, пылезащищённое, закрытое, герметичное и взрывозащищённое. Например, машины защищённого выполнения могут устанавливаться только в закрытых помещениях, т.к. не имеют защитных приспособлений от попадания дождя внутрь машины. В то же время герметичные машины выполняются с особо плотной изоляцией внутреннего пространства от окружающей среды и могут работать под водой, в газовых камерах.
   По способу охлаждения различают машины с естественным и искусственным охлаждением. Охлаждение необходимо для предотвращения недопустимого нагрева, вызываемого потерями мощности в электрической машине. Электрические микромашины обычно охлаждаются за счёт естественного теплообмена с окружающей средой (естественное охлаждение). Машины большей мощности имеют искусственное охлаждение, в основном воздушное. Искусственное охлаждение бывает двух типов: а) самовентиляция, когда охлаждение осуществляется вентилятором, насаженным на вал самой машины; б) независимая вентиляция, когда охлаждающий воздух продувается через машину или на поверхность машины вспомогательным вентилятором. Жидкостное охлаждение применяется только в машинах большой мощности.
   Классификация по функциональному признаку существенно связана с уровнем мощности машин. Среди электромашинных устройств автоматики значительную долю составляют электрические микромашины. Поэтому в качестве примера рассмотрим функциональную классификацию микромашин, определяющую их назначение и области применения.

Электрические микромашины можно подразделить на две группы:
     1) общего назначения;
     2) автоматических систем и приборов.

Электрические микромашины общего назначения – это в основном микродвигатели (рис. В.1), работающие от сети трёхфазного и однофазного переменного тока или от сети постоянного тока и предназначенные для привода, чаще всего нерегулируемого, различных узлов и механизмов.
   Электрические микромашины автоматических систем и приборов (рис. В.2) делятся на четыре подгруппы:
     1) силовые микромашины, преобразующие электрический сигнал в механический;
     2) информационные микромашины, преобразующие механический сигнал (угол поворота, угловую скорость и угловое ускорение) в электрический сигнал;
     3) гироскопические микромашины – элементы гироскопических устройств и приборов;
     4) преобразователи значения и вида напряжения, частоты и усилители мощности.
   В настоящем учебном пособии наиболее подробно рассматриваются микромашины первой, второй и четвёртой подгрупп, составляющие основу класса технических средств, называемых электромеханическими устройствами автоматики.

Основные требования, предъявляемые к электрическим микромашинам, разделяются на две группы:
   1.Общие требования, не связанные с конкретными условиями эксплуатации и областью применения. Для электрических микромашин общего применения основными требованиями являются высокие энергетические показатели – коэффициент полезного действия и коэффициент мощности; длительный срок службы; низкая стоимость; простота конструкции и технологии изготовления; ремонтопригодность. Для электрических микромашин автоматических систем и приборов эти требования не являются решающими. Основные требования к информационным микромашинам – высокая точность преобразования и стабильность характеристик. Силовые микромашины и преобразователи наряду с достаточной точностью и быстродействием должны иметь хорошие энергетические показатели. Практически ко всем микромашинам автоматических систем и приборов предъявляется требование высокой надёжности, т.е. способности безотказно работать в течение заданного времени и при определённых условиях эксплуатации.
   2. Требования, предъявляемые в зависимости от области применения и условий эксплуатации: минимальные габаритные размеры и масса при заданных выходных параметрах – для микромашин бортовой аппаратуры, подвижных частей промышленных роботов; устойчивость к вибрации и ударным нагрузкам - для транспортных и сельскохозяйственных машин, бортовой аппаратуры; климатическая и радиационная устойчивость – для микромашин, работающих в ядерных реакторах, на космических аппаратах и в условиях тропического климата; взрывобезопасность – для микромашин шахтного и рудничного оборудования; низкий уровень создаваемых шумов – для микромашин звукозаписывающей и звуковоспроизводящей аппаратуры; низкий уровень излучаемых радиопомех – для микромашин, работающих в комплекте с электронной аппаратурой; низкий уровень газовыделений – для микромашин, применяемых в вакуумном технологическом оборудовании.

Рис. В.1.

Рис. В.2.

+7(985)928-61-99 Москва, ул.Большая Переяславская, д.9