Разработка и производство сервоприводов,
бесколлекторных и вентильных двигателей, движитель (трастер) для телеуправляемого необитаемого подводного аппарата (ТНПА, ROV)

Адрес: Москва, ул.Большая Переяславская, д.9+7(985)928-61-99
Литье пластика на заказ
ДОКУМЕНТАЦИЯ

§2.5. Пуск, реверсирование и торможение асинхронных двигателей

Пуск.
   Условием пуска двигателя является неравенство Мпст ; если это условие выполняется, то при включении двигателя в сеть ротор приходит в движение и разгоняется до установившегося режима. При пуске ( ω2= 0, S= 1) ток в роторе достигает наибольшего значения (см. (2.15)). Соответственно велики пусковые токи и в обмотке статора, электродинамические усилия, действующие на обмотку, токовые перегрузки в питающей сети.
   У асинхронных двигателей малой мощности и специальных двигателей с повышенным критическим скольжением обычно кратность пускового тока Кiп ≤ 6 и допускается непосредственное включение двигателя в сеть. Если Кiп > 6 или требуется более сильно ограничить пусковой ток, то приходится применять специальные способы пуска. У двигателей с короткозамкнутым ротором это в основном способы пуска при пониженном напряжении питания. По мере разгона ротора токи в обмотках уменьшаются и напряжение может быть повышено до номинального значения. Недостатком способов пуска при пониженном напряжении является то, что пропорционально квадрату фазного напряжения уменьшается пусковой момент (см. (2.22)).
   У двигателей с рабочей схемой соединения обмоток статора в “треугольник” возможен пуск переключением со “звезды” на “треугольник”. Пуск происходит при соединении обмоток статора в “звезду”. Фазные напряжения и токи в раз, а линейный ток в √3 раза меньше, чем при прямом пуске на схеме “треугольник”. После разгона обмотки статора переключают на рабочую схему “треугольник”. Однако, как уже отмечалось, уменьшается и пусковой момент – в 3 раза.
   У двигателей с контактными кольцами чаще применяется р е о с т а т н ы й способ пуска, основанный на изменении добавочного активного сопротивления – пускового реостата R, включаемого в цепь ротора (рис. 2.13,a).


Рис.2.13

Включение в цепь ротора активного сопротивления уменьшает ток в роторе и одновременно, как показано на рис. 2.13,б, увеличивает пусковой момент: при RПD>RПС>RПB>RПА пусковой момент МпDпCпBпA. Пуск осуществляют путем постепенного, обычно ступенчатого, уменьшения сопротивления Rп (жирные линии на рис. 2.13, б). Максимальное значение сопротивления Rп и его ступени ( RпA, RпB, RпC, RпD ) выбирают так, чтобы пики тока не превышали допустимых и пусковой момент Мп был больше момента сопротивления Мст. Однако эти двигатели более сложные и дорогие и их целесообразно применять только при тяжелых условиях пуска, когда необходим максимальный пусковой момент и мала мощность питающей сети.
Более современным способом пуска двигателя с контактными кольцами, основанным на изменении добавочного активного сопротивления в цепи ротора, является и м п у л ь с н ы й способ (рис. 2.14,а).


Рис.2.14

Пусковое сопротивление Rп подсоединяют последовательно к обмотке ротора через неуправляемый выпрямитель В. Периодическое подключение Rп производится силовым тиристором Т. Если тиристор Т включен, его сопротивление практически равно нулю, т.е. Rп шунтируется. Если тиристор Т отключен, его сопротивление существенно больше сопротивления Rп и можно считать, что цепь ротора по тиристору разомкнута, а замкнута через сопротивление Rп. Это можно представить как подключение к цепи ротора некоторого пускового сопротивления, среднее значение которого изменяется при изменении относительной продолжительности ε включения тиристора: Rп.cp = Rп (1- ε ) (рис.2.14.б), где ε =tи /Tи.
   Относительная продолжительность может изменяться от I до 0, соответственно, Rп.cp - от 0 до Rп. Семейство механических характеристик при различной скважности будет иметь такой же вид, что и при обычном реостатном пуске (см. рис. 2.13,6), причем характеристике RпА=0 соответствует ε =1, характеристике RпD=Rп соответствует ε =0.
   Преимущества рассмотренного импульсного способа по сравнению с обычным реостатным заключается прежде всего в том, что пуск может быть плавным и что способ удобен для реализации автоматического пуска.

Реверсирование двигателя.
    Изменение направления вращения ротора осуществляется изменением направления вращения поля статора. Для этого достаточно поменять местами выводы двух любых фаз.

Торможение двигателя.
    Для быстрой остановки двигателя могут применяться различные способы электрического торможения: рекуперативное, торможение противовключением и динамическое торможение.
   Рекуперативное торможение происходит при работе асинхронной машины в режиме генератора параллельно с сетью, т.е. при ω21 (см. рис. 2.9,б). На практике этот режим встречается в основном при переходе с высших угловыхскоростей на низшие, например, при изменении числа пар полюсов или частоты напряжения питания.
   Торможение противовключением происходит в том случае, когда магнитное поле статора вращается в одном направлении, а ротор в противоположном. При этом угловая скорость ротора и создаваемый двигателем момент имеют противоположные знаки. Основным способом перевода работающего двигателя в этот режим является переключение любых двух фаз статора. При этом изменяется направление вращения магнитного поля и двигатель переходит из точки А (рис.2.15,а; характеристика 1) в точку В (характеристика 2).


Рис.2.15

Электромагнитный момент Мэм изменяет знак, т.е. становится тормозным, и угловая скорость ротора, продолжающего по инерции вращаться в прежнем направлении, быстро уменьшается. Если в точке С двигатель отключить от сети, ротор остановится. В противном случае произойдет реверсирование двигателя - ротор начнет вращаться в противоположном направлении и перейдет в установившийся режим в точке D.
   Реверсирование или торможение противовключением асинхронных двигателей с контактными кольцами средней и большой мощности осуществляется с одновременным подключением к цепи ротора дополнительного активного сопротивления с целью ограничения чрезмерно больших токов.
   Динамическое торможение осуществляется отключением обмотки статора от сети переменного тока и подключением к сети постоянного тока (рис.2.15, б; ключ К1 – разомкнут, К2 – замкнут). Возникает неподвижное поле статора, которое наводит ЭДС и токи во вращающемся роторе. В результате взаимодействия этих токов с полем статора создается тормозной момент. Механические характеристики в режиме динамического торможения расположены во II квадранте (кривые 2 и 3 на рис.2.15, в) и похожи на механическую характеристику в режиме двигателя (кривая I). В отличие от режима двигателя максимальный момент наступает при тем большей угловой скорости ротора чем больше активное сопротивление ротора. В момент переключения питания двигатель переходит из точки А характеристики I в точку B характеристики 2, электромагнитный момент меняет знак и начинается интенсивное динамическое торможение, заканчивающееся в точке 0.
   У двигателей с контактными кольцами в момент переключения в цепь ротора включается добавочное активное сопротивление Rд для повышения начального тормозного момента (переход в точку С ) и снижения токов.


Назад | Оглавление | Вперед
+7(985)928-61-99 Москва, ул.Большая Переяславская, д.9