Разработка и производство сервоприводов,
бесколлекторных и вентильных двигателей, движитель (трастер) для телеуправляемого необитаемого подводного аппарата (ТНПА, ROV)

Адрес: Москва, ул.Большая Переяславская, д.9+7(985)928-61-99
Литье пластика на заказ
ДОКУМЕНТАЦИЯ
назад | оглавление | вперед

3. Синхронные электрические машины

3.1. Общие сведения

Электромагнитная схема синхронной машины имеет вид (рис3.1):

Рис. 3.1. Электромагнитная схема синхронной машины (а) и схема ее включения (б)

 

Важным отличием синхронной машины от асинхронной является то, что главный магнитный поток в ней создается НС постоянного тока возбуждения Iв , который машина получает от источника Uв, т. е. в машине имеет место раздельное питание обмоток статора и ротора.

Статор машины выполнен аналогично статору асинхронной машины. На нем расположена -фазная (обычно трехфазная) обмотка. Обмотка ротора 4 состоит из одной или нескольких катушек, образующих многополосную систему с тем же числом пар полюсов р, что и обмотка статора 3. Обмотка ротора соединяется с внешним источником питания Uв посредством контактных колец 5 и щеток 6.

При вращении ротора со скоростью n2 в обмотке статора индуктируется ЭДС , изменяющаяся с частотой

f1=(pn2)/60,

(3.1.1)

где

p - число пар полюсов машины.

При подключении обмотки статора к какой-либо нагрузке в ней протекает многофазный ток, который создает вращающееся магнитное поле. Скорость вращения этого поля:

n1=(60f1)/p.

(3.1.2)

Из приведенных выше выражений следует n1=n2, т. е. магнитные поля ротора и статора вращаются с одинаковой скоростью. Поэтому рассматриваемая машина получила название синхронной. В синхронной машине результирующий магнитный поток Фрез создается совместным действием намагничивающих сил обмотки возбуждения и обмотки статора и вращается с той же скоростью, что и ротор.

Часть электрической машины, в которой индуктируется ЭДС, принято называть якорем, поэтому в синхронной машине статор является якорем, а ротор - индуктором. Синхронная машина может работать в качестве автономного генератора, питающего подключенную к ней нагрузку, а так же подключаться параллельно к сети, к которой присоединены другие генераторы. При работе параллельно с сетью она может отдавать или потреблять электрическую энергию, т.е. работать генератором или двигателем. В результате взаимодействия тока ротора Iв с вращающимся магнитным полем, создается электромагнитный момент, который при работе машины в двигательном режиме является вращающим, а в генераторном - тормозящим.

Таким образом, синхронная машина имеет следующие особенности:

- ротор машины, как в двигательном, так и в генераторном режимах, вращается с постоянной скоростью, равной скорости вращения магнитного поля;

- частота изменения ЭДС Е1, индуктируемой в обмотке статора, пропорциональна скорости вращения ротора;

- в обмотке ротора ЭДС не индуктируется, а магнитное поле создается постоянным током, подводимым от внешнего источника, или постоянными магнитами.

Постоянство скорости вращения ротора синхронной машины обусловливает область ее применения: в качестве генераторов промышленной частоты на подстанциях или в дизель - генераторах, а в качестве двигателей в тех случаях, когда необходимо постоянство скорости вращения выходного вала машины.

В случае параллельной работы с другими синхронными машинами для включения синхронной машины в общую сеть требуется предварительная синхронизация, т. е. частота выходного напряжения должна быть строго равна частоте сети, а ЭДС машины - равной по величине и противоположной по фазе напряжению сети. При идеальной синхронизации машины с сетью токи в обмотках статора после подключения машины к сети, будут равны нулю. В таких условиях синхронная машина не отдает энергию в сеть и не потребляет ее, т. е. по отношению к сети она не является ни генератором, ни двигателем. Собственные потери синхронной машины, механические и магнитные, при этом покрывает первичный двигатель.

Если увеличивать момент, приложенный первичным двигателем к валу машины, то под действием возросшего момента ротор машины сместится вперед, и если раньше середина полюса ротора находилась против проводников данной фазы статора как раз в тот момент, когда напряжение сети на этой фазе достигло своего максимума, то теперь это условие нарушается, и так как ЭДС ротора и напряжение сети уже взаимно не уравновешиваются, то в обмотках статора возникает ток, создаваемый результирующим напряжением. Взаимодействие этого тока с полем машины создает тормозящую силу, воздействующую на ротор. При посредстве этой силы механическая мощность первичного двигателя будет превращаться в электрическую мощность, отдаваемую генератором в сеть. Поле ротора будет как бы вести за собой поле статора.

Если затем уменьшать вращающий момент на валу синхронной машины, то под действием тормозящего момента электромагнитных сил поле ротора будет уменьшать свой угол опережения по отношению к полю статора, и вместе с уменьшением угла между осями полей будет уменьшаться и тормозящая сила взаимодействия токов статора и поля машины.

Наконец, когда напряжение сети будет уравновешиваться ЭДС статора, тогда машина перестанет отдавать энергию в сеть, ток в обмотке статора, а, следовательно, и тормозящая электромагнитная сила, становится равной нулю.

Если теперь приложить к валу машины вместо вращающего тормозящий момент механической нагрузки, то ротор сместится по отношению к вращающему полю в сторону отставания. Вновь возникнут токи в обмотках статора и создадут электромагнитные силы взаимодействия токов статора и поля ротора, но на этот раз силы будут стремиться сместить ротор вперед, т. е. создадут вращающий момент, при посредстве которого электрическая мощность сети превращается в механическую мощность на валу машины; таким путем синхронная машина переходит к работе двигателем. Режим машины меняется от генераторного к двигательному и обратно в зависимости от механического воздействия на вал машины, причем электромагнитные силы играют роль своеобразной упругой связи между полем ротора и полем статора. Можно сравнить их с пружинами, связывающими два шкива А и В - ведущий и ведомый (рис. 3.2).

а)

б)

в)

Рис. 3.2. Механическая модель образования синхронного момента в виде двух шкивов, соединенными пружинами ((а) - нет передачи энергии; (б) - передача энергии от шкива А к шкиву В; (в) - передача энергии от шкива В к шкиву А)

 

Шкив изображает в такой модели поле ротора, шкив В - поле статора. Всякое изменение механической силы на валу шкива А вызывает изменение относительного положения шкивов и изменение направления и степени натяжения пружин. При (рис. 3.2а) пружины свободны, т. к. нет передачи энергии между шкивами; при происходит передача энергии от шкива А к шкиву В, поэтому пружины натянуты от шкива А к шкиву В (рис. 3.2б); при происходит обратный обмен энергией, поэтому пружины натянуты в обратную сторону (рис. 3.2в).

Таким образом, при параллельной работе синхронной машины с сетью скорость вращения машины жестко определяется частотой сети; изменение момента на валу меняет лишь угол между осями полей ротора и статора, в то время как в асинхронной машине в таких условиях меняется скорость вращения ротора (скольжение).

Реакция якоря в синхронном генераторе. Магнитное поле нагруженной синхронной машины возбуждается не только НС ротора, на это поле действует НС обмотки якоря, обтекаемой нагрузочным током.

В асинхронной машине ток статора изменяется автоматически вслед за изменение тока ротора и, таким образом, сохраняется практически постоянным поток в воздушном зазоре. В синхронной машине изменение тока статора не вызывают автоматического изменения постоянного тока возбуждения. Поэтому результирующее магнитное поле синхронной машины изменяется с изменением нагрузки, меняется относительное положение вращающегося поля статора к вращающемуся полю ротора, а, следовательно, и характер реакции якоря. Если рассматривать синхронный генератор, то при активной нагрузке ток в фазе статора достигает максимума в тот момент, когда против этой фазы находится середина полюса (3.3а).

a)

б)

в)

Рис. 3.3. Реакция якоря и кривые распределения индукций в неявнополюсной машине при различных условиях нагрузки

Поле статора будет в этом случае поперечным, ось потока полюсов ротора перпендикулярна оси поля статора - у набегающего конца полюса оно направлено против поля ротора и ослабляет это поле, а у сбегающего конца поля оно усиливает поле ротора. Реакция якоря в случае активной нагрузки генератора вызывает смещение оси результирующего поля в сторону вращения. Результирующий поток при этом несколько изменяется вследствие влияния насыщения, а именно, он ослабляется у набегающего конца полюса больше, чем усиливается у сбегающего.

В идеальном случае чисто индуктивной нагрузке генератора (3.3б) величина тока в фазе статора будет достигать своего максимального значения только тогда, когда соответствующий полюс ротора уйдет вперед на 90 градусов; при индуктивной нагрузке поток статора направлен вдоль полюса ротора против потока ротора. Следовательно, при индуктивной нагрузке НС тока статора стремится возбудить размагничивающий продольный поток.

В идеальном случае чисто емкостной нагрузке генератора (3.3в) ток статора будет достигать максимума тогда, когда соответствующий полюс ротора будет находиться еще на расстоянии 90 градусов от середины фазы. В этом случае поток ротора будет намагничивающим продольным.

Условие синусоидальности распределения поля статора вдоль окружности статора существенно нарушается в случае явнополюсных роторов, у которых распределение поля статора вдоль окружности статора далеко не синусоидально.

Следовательно, в синхронной машине реакция якоря вызывает изменение магнитного поля машины и в результате - изменение ее ЭДС. В машинах с явными полюсами это явление еще осложняется искажением кривой ЭДС. Для синхронных генераторов подобное влияние величины тока и сдвига фаз нагрузки на напряжение машины весьма нежелательно. Чтобы свести влияние реакции якоря к минимуму, необходимо, чтобы НС якоря была мала по сравнению с НС ротора. Для осуществления этого условия необходимо увеличить магнитное сопротивление машины.

Лучше и проще всего повышение магнитного сопротивления осуществляется путем увеличения воздушного зазора машины. Однако при этом необходимо соответствующее увеличение НС ротора, но в синхронной машине это увеличение намагничивающего тока допустимо, т. к. энергия магнитного поля ротора остается неизменной, а возбудитель синхронной машины должен давать энергию только для покрытия тепловых потерь в цепи ротора. В асинхронной машине условия иные, там намагничивающий ток должен поддерживать колебания энергии магнитного поля машины - он является реактивным током, ухудшающим cosφ установки, и желательно сделать его возможно меньшим.

Явление реакции якоря относится и к синхронным двигателям, но, т. к. в этих двигателях форма кривой ЭДС практически малосущественна, то реакция якоря в них имеет второстепенное значение.

 

назад | оглавление | вперед
+7(985)928-61-99 Москва, ул.Большая Переяславская, д.9